If it's not what You are looking for type in the equation solver your own equation and let us solve it.
320t-16t^2=0
a = -16; b = 320; c = 0;
Δ = b2-4ac
Δ = 3202-4·(-16)·0
Δ = 102400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{102400}=320$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(320)-320}{2*-16}=\frac{-640}{-32} =+20 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(320)+320}{2*-16}=\frac{0}{-32} =0 $
| 2x(x+9)(x-20)=0 | | 13=2c-3 | | 12=12x-16 | | 110x-x^2=10 | | d-2.5=3.72 | | 0=3x^2+16x+16 | | 12x+5(10000-x)=108800 | | y÷10=7 | | 3x(x+7)(x-18)=0 | | 45=12-3*x | | 5x/2=x/2+130 | | 5(2x-10)=6x+30 | | 2/3(6x+8)=1/4(12x+8) | | 8(3)+2y=18 | | 2(2x-(x+8))=5(x-1) | | 40x-x²=450 | | 15-4x=10x+5 | | -9x+3.8=9x+2” | | k-7/8=211/24 | | x+11÷3-5=1 | | 6x+54-6x=54 | | 21m²+30m+9=48 | | 8x3.5=-7x+2 | | (3y-9)(y-9)=0 | | 40x-x^2=450 | | 2=k2^2 | | 0.25*c=12.96-c | | -5+7y=73-y | | 7x+20=5x | | 72-9=7+n | | 5y+13=93 | | b· 35= 34 |